117 research outputs found

    The N-terminal domain of Lhcb proteins is critical for recognition of the LHCII kinase

    Get PDF
    AbstractThe light-harvesting chlorophyll (Chl) a/b complex of photosystem (PS) II (LHCII) plays important roles in the distribution of the excitation energy between the two PSs in the thylakoid membrane during state transitions. In this process, LHCII, homo- or heterotrimers composed of Lhcb1–3, migrate between PSII and PSI depending on the phosphorylation status of Lhcb1 and Lhcb2. We have studied the mechanisms of the substrate recognition of a thylakoid threonine kinase using reconstituted site-directed trimeric Lhcb protein–pigment complex mutants. Mutants lacking the positively charged residues R/K upstream of phosphorylation site (Thr) in the N-terminal domain of Lhcb1 were no longer phosphorylated. Besides, the length of the peptide upstream of the phosphorylated site (Thr) is also crucial for Lhcb phosphorylation in vitro. Furthermore, the two N-terminal residues of Lhcb appear to play a key role in the phosphorylation kinetics because Lhcb with N-terminal RR was phosphorylated much faster than with RK. Therefore, we conclude that the substrate recognition of the LHCII kinase is determined to a large extent by the N-terminal sequence of the Lhcb proteins. The study provides new insights into the interactions of the Lhcb proteins with the LHCII kinase

    Online monitoring instantaneous 2D temperature distributions in a furnace using acoustic tomography based on frequency division multiplexing

    Get PDF
    The online and accurate capture of dynamic changes in furnace temperature distribution is crucial for production efficiency improvement and international environmental policy compliance in power plants. To achieve this, a measurement system with a reliable online reconstruction capability and high temporal resolution is necessary. This paper presents a novel technique that can improve the temporal resolution of the currently existing acoustic tomography (AT) system using frequency division multiplexing (FDM). This method allows for concurrent transmissions of acoustic signals in several different frequency bands instead of a sequential manner, which leads to more efficient channel utilization and allows all acoustic signals to be acquired at the same time, so that a better temporal uniformity of multipath acoustic signals can be realized. Theoretical analysis and experiments have been conducted to verify the effectiveness of this technique. The results prove that the proposed method can significantly improve the temporal resolution of the AT system while maintaining the accuracy and robustness of the reconstruction

    A stability and spatial-resolution enhanced laser absorption spectroscopy tomographic sensor for complex combustion flame diagnosis

    Get PDF
    A novel stable laser absorption spectroscopy (LAS) tomographic sensor with enhanced stability and spatial resolution is developed and applied to complex combustion flame diagnosis. The sensor reduces the need for laser collimation and alignment even in extremely harsh environments and improves the stability of the received laser signal. Furthermore, a new miniaturized laser emission module was designed to achieve multi-degree of freedom adjustment. The full optical paths can be sampled by 8 receivers, with such arrangement, the equipment cost can be greatly reduced, at the same time, the spatial resolution is improved. In fact, 100 emitted laser paths are realized in a limited space of 200mm×200 mm with the highest spatial resolution of 1.67mm×1.67 mm. The stability and penetrating spatial resolution of the LAS tomographic sensor were validated by both simulation and field experiments on the afterburner flames. Tests under two representative experiment states, i.e., the main combustion and the afterburner operation states, were conducted. Results show that the error under the main combustion state was about 4.32% and, 5.38% at the afterburner operation state. It has been proven that this proposed sensor can provide better tomographic measurements for combustion diagnosis, as an effective tool for improving performances of afterburners

    Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    Get PDF
    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front

    Holocene variability of East Asian summer monsoon as viewed from the speleothem δ18O records in central China

    Get PDF
    Monsoon precipitation in East China shows distinct spatial distribution and its variability is closely linked with the changes of the East Asian summer monsoon (EASM). Located in the transition zone between the southern subtropical humid climate and the northern warm temperate semi-humid climate, central China is a core region for recognizing and understanding the spatio-temporal variability of the EASM. Using U-series dating and stable isotope analysis on five stalagmites (MG-1, MG-2, MG-7, MG-40 and MG-64) from Magou Cave, Henan Province, Central China, we construct a high-resolution and precisely dated composite stalagmite O time series covering most of the Holocene. This composite record reveals variations in precipitation O between 11.7 and 1.1 ka BP with average resolution of ∼4 yrs. The Magou composite record demonstrates that EASM intensity dominates long-term changes in precipitation O, which generally follows the northern hemisphere summer insolation (NHSI) trend. Both, Ensemble Empirical Mode Decomposition (EEMD) and wavelet filtering analyses real that the amplitudes of long-term (100-500 and 500-3000 yrs) components were slightly reduced between 8.5 and 4.9 ka BP, implying a weakened influence of climatic forcings on centennial and even millennial timescales during this warm period. Variance on 1-30-yr timescales is relatively low and ascribed to sampling resolution. Fourteen weak EASM intervals, including the 8.2 ka event, were identified within the period corresponding broadly with the Holocene Megathermal. Since no cold excursions other than the 8.2 ka event are found in the Greenland ice core records, we tentatively propose that oscillations in tropical sea surface temperature (SST) likely play an important role in steering other weak monsoon events. Aligning the Magou composite record and other moisture records with archaeological records from the study region, it seems that climate change influenced both the spatial distribution and agricultural practices of ancient cultures. However, overall moderate climatic changes in this region, most likely characterized by shifts between subtropical humid climate and warm temperate semi-humid climate, supported a generally consecutive development of ancient cultures without major hiatuses

    Construction and immunological characterization of CD40L or GM-CSF incorporated Hantaan virus like particle

    Get PDF
    Infection of Hantaan virus (HTNV) usually causes hemorrhagic fever with renal syndrome (HFRS). China has the worst epidemic incidence of HFRS as well as high fatality. Inactivated whole virus has been used for HFRS vaccination, however there are still problems such as safety concerns. CD40 ligand (CD40L) and granulocyte macrophage colony-stimulating factor (GM-CSF) are well-known immune stimulating molecules that can enhance antigen presenting, lymphocytes activation and maturation, incorporation of CD40L and GM-CSF to the surface of virus like particles (VLPs) can greatly improve the vaccination effect. We constructed eukaryotic vectors expressing HTNV M segment and S segment, as well as vectors expressing HTNV M segment with CD40L or GM-CSF, our results showed successful production of CD40L or GM-CSF incorporated HTNV VLPs. In vitro stimulation with CD40L or GM-CSF anchored HTNV VLP showed enhanced activation of macrophages and DCs. CD40L/GM-CSF incorporated VLP can induce higher level of HTNV specific antibody and neutralizing antibody in mice. Immunized mice splenocytes showed higher ability of secreting IFN-γ and IL-2, as well as enhancing CTL activity. These results suggest CD40L/GM-CSF incorporated VLP can serve as prospective vaccine candidate
    corecore